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1 Introduction

1.1 Acknowledgement

The team would like to acknowledge the following people and groups for their contribution
to our project:

● Dr. Santosh Pandey
○ For his guidance, leadership, and efforts facilitating our understanding of the

problem and possible solutions.
● Yunsoo Park (PhD Student)

○ For his help in understanding existing object detection algorithms, identifying
cysts in images, and sharing his general knowledge of the problem with us.

● Dr. Greg Tylka (Morrill Professor, Nematologist, Director of the Iowa Soybean Research
Center)

○ For his detailed explanation of existing processes and methods and his tour of the
lab where that happens on Iowa State’s campus.

● Facebook’s Research team
○ For their implementation of Mask R-CNN in their open source Detectron2

project, which will likely serve as a strong foundation for our project.

1.2 Problem and Project Statement

Every year 15-30% of soybeans are infected with parasitic cyst nematodes [1], limiting their
yield and forcing farmers to use pesticides. Farmers are currently faced with the issue of
expensive and slow lab analysis that provide insight into how many cysts are on soybean
plants. These lab techniques cost the farmers valuable time as they must wait for the results
to apply the fertilizer necessary for the continued health of their soybean crops.

Our goal is to make a product that can detect and count microscale objects, which is cysts in
our case. In computer vision, there are different algorithms that can detect objects. In similar
fields, for example, there are some algorithms that can detect cars or people in images [2].
Therefore we want to implement an object detection algorithm designed for small objects to
determine how many cysts are on the roots of soybean plants. We will also create a device to
integrate image capturing with the machine learning algorithm, therefore, increasing
productivity on the farm. Detecting cysts is the first step in eliminating them. Geneticists will
be able to run tests to find if certain species of soybeans are more resistant to cysts, and
farmers will know the amount of pesticides to use. This process will increase soybean
productivity and decrease the overuse of pesticides.

https://www.ece.iastate.edu/pandey/
https://www.researchgate.net/profile/Yunsoo-Park-3
https://crops.extension.iastate.edu/people/greg-tylka
https://github.com/facebookresearch/detectron2
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1.3 Operational Environment

In our case, to maximize the advantages of not damaging the plant’s root, we are considering
a portable hardware solution intended for outdoor use, specifically on farm fields by the
researcher, geneticists and farmers. Since our products are allowed to be used outside of the
labs, the product must be designed to function without access to Wi-Fi or electronic plugs for
charging. It should be able to handle various weather conditions, such as sunny, cloudy, or
windy days. Additionally, temperature fluctuations should be taken into account, though they
will not be extreme. The target environment involves soybean cultivation, which typically
occurs between 68°F and 86°F.

1.4 Requirements

Requirement Type Details

Functional
Requirements

● Software(Algorithm)
○ Functional without internet access

■ Independent of software upgrades (no
server)

○ Better than 50% accuracy for detecting cysts in
images (Constraint)

○ Less than 5 second of processing time per image
(Constraint)

○ Less that 1GB space taken by the application
(Constraint)

○ Image processing independent of MATLAB
● Hardware (Image Capture)

○ High-enough image resolution to use for object
detection

○ Portable (Wireless, can be used on a field)
○ Does not damage plants

Resource
Requirements

● Processors/Processing time to train the algorithm
● Materials to build a prototype device

○ Cameras
○ Motors (depending on prototype design)
○ Misc building materials (aluminum, plexiglass,

screws, wires, etc)
● Plants of certain age (3 week to 5 week maturity)

Qualitative Aesthetics
Requirements

● Keep the device as small as possible
● Easy to transport
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Economic/Market
Requirements

● Create a final device that is affordable for farmers
○ Upper limit around $500 (Constraint)

Environmental
Requirements

● Must not damage plants in any way
● Provide an accurate number of cysts to avoid an overuse

of pesticide consumption

UI/UX Requirements ● Farmer should not interact with product during image
capture process

● No formal training required to use the device

Table 1.4-1 Project Requirements

1.5 Intended Users and Uses

WHO has the problem?

Primary users: Industries and crop researchers.

Secondary users: Farmers.

WHAT is the problem?

Expensive analysis required to gain measurable insight into how many parasitic cysts are on
soybean plants. Currently in the U.S, cysts nematodes are affecting about 15~30% of yields
of soybean every year. That causes about $1 billion losses annually [1].

Also, there aren't any methods that analyze the number of cysts directly from the root. Other
methods require using technical equipment to crush the Cysts and analyze using the
microscopic tools.

WHERE is the problem occurring?

The cysts attach to the roots of soybeans underground. In the United States, soybean
production is most common in Iowa, Illinois, Nebraska, Minnesota, and Indiana. Also in the
research lab, expensive tools are used with technical steps in order to count cysts.

WHEN is the problem occurring?

Before harvesting, during the growth of the plants.
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WHY is it important?

Crop researchers can make more educated decisions about while developing cyst-resistant
plants. Farmers can make more educated decisions about the proper care of their crops.

HOW will it be solved?

Machine Learning algorithms have made several developments that are tailored to
identifying small objects in images. These improvements give a strong indication that a
prototype device can be trained to recognize the cysts and provide accurate measurements to
farmers.

Use Cases:

1) Uses for farmers
2) Uses for genetecists/plant pathologists
3) Uses for continuing developers/project maintainers

Figure 1.5-1 below shows a use case diagram for our final product:

Figure 1.5-1: User Case diagrams, interaction between Researcher, Farmer and Developer

1.6 Assumptions and Limitations

Assumption Justification
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Only 2 pictures per plant will provide
enough data for the counting algorithm.

Scanning both sides of the plant should
capture every cyst in at least one image.

User will not have to interact with the
product during its image capturing and
counting algorithm phases.

Product will be mostly autonomous, with
some user interaction for setting it up and
running it.

Blue is the best background color. Blue is the most direct contrast to the
colorization of the cysts.

Python counting algorithm will be runnable
on a Raspberry Pi.

Raspberry Pi can interface with and control
the LCD screen, the camera, and the motor.

Adapters and circuit board (may not be
required) connections are available for each
product.

Product can be used in the field. Product is easily transportable and internet
free.

Product will be used for soybean parasitic
cyst counting only.

Image capture process is trained for
parasites unique to soybean plants.

Table 1.5-1 Assumptions and Justifications

Limitation Justification

1 plant processed at a time. Counting process is limited to one plant
with associated results. Multiple plants
would derefence the results.

Cost to produce shall not exceed $500.

Dimensions will be 12”x15” Size of the base

Counting algorithm will exceed 50%
accuracy but not exceed 80% accuracy.

Faster R-CNN algorithm has repeatedly
shown high performance for small object
detection, but the research has not indicated
over 80% accuracy.

Battery life of 2 hours.

Table 1.5-2 Limitations and Justifications

1.7 Expected End Product and Deliverables
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The primary end goal for the Cyst Detector project is to develop and implement machine
learning algorithms that can accurately detect small-scale objects, specifically cysts. The
software will be designed to identify cysts within plant roots without causing any damage or
requiring grinding of the roots. This cutting-edge algorithm will lay the foundation for future
hardware integration, enabling the creation of a scanner that utilizes the algorithm to count
the number of cysts present. Delivery date: Fall of 2023.

As an extension of the project, we will develop a hardware solution that acts as a scanner to
utilize the machine learning algorithm for cyst detection and counting. The hardware will be
designed with simplicity, cost-effectiveness, and automation in mind, allowing users to focus
on other tasks while the device processes the count. Furthermore, the hardware will be
suitable for outdoor use, portable, and able to operate without an internet connection.

A user-friendly software interface will be developed to facilitate seamless interaction
between the user and the cyst detection system. This interface will allow users to scan plant
roots with the hardware device and obtain cyst count results generated by the machine
learning algorithm. The software will be designed to work efficiently both with and without
an internet connection, ensuring flexibility and reliability in various environments.

Comprehensive documentation will be provided for both the cyst detection machine learning
algorithm and the hardware scanner which clients can update and maintain afterwards as
well. Documentation will include guidelines for installation, setup, and operation, along with
troubleshooting tips and maintenance instructions. These resources will ensure that users can
effectively deploy and manage the Cyst Detector system in their operations.

2. Specifications and Analysis

2.1 Proposed Approach

Our task is to develop a deep learning model that can find and count the number of specific
microscale objects in the image. To address the problem, we have researched various object
detection algorithms, including YOLO, Faster R-CNN, and Single Shot Detection. We have
compared these algorithms to determine the best fit for our project. Additionally, we have
explored labeling tools and started working on the labeling process. We have also identified
existing algorithm implmentations that we may use as part of our project. Based on our
algorithm implementation, we will develop hardware tools that are portable, which
researchers can utilize outside of their laboratories.

Our project adheres to or is relevant to the following standards:
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IEEE 268-1992

American National Standard for Metric Practice

Guidance for the application of the modernized metric system in the United States is
given. Known as the International System of Units (SI), the system is intended as a
basis for worldwide standardization of measurement units. Information is included on SI,
a limited list of non-SI units recognized for use with SI units, and a list of conversion
factors from non-SI to SI units, together with general guidance on proper style and
usage. [4]

IEEE/ISO/IEC 32675-2021

- ISO/IEC/IEEE International Standard--Information
technology--DevOps--Building reliable and secure systems including
application build, package and deployment

Technical principles and processes to build, package, and deploy systems and
applications in a reliable and secure way are specified. Establishing effective compliance
and information technology (IT) controls is the focus. DevOps principles presented
include mission first, customer focus, left-shift, continuous everything, and systems
thinking. How stakeholders, including developers and operations staff, can collaborate
and communicate effectively is described. The process outcomes and activities herein
are aligned with the process model specified in ISO/IEC/IEEE 12207:2017 and
ISO/IEC/IEEE 15288:2015. [5]

IEEE/ISO/IEC P24748-6

ISO/IEC/IEEE Draft Standard - Systems and Software Engineering -- Life Cycle
Management

This standard:

● Provides requirements and guidance for use of the integration process and its
relationships to other system and software life cycle processes as described in
ISO/IEC/IEEE 15288:2015 and ISO/IEC/IEEE 12207:2017,

● Specifies information items to be produced as a result of using the integration
process, including the content and format of the information items.

This standard provides a detailed presentation of system and software integration,
considering:

● The related concepts of integration, such as interface, verification, and validation;
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● The possible composition of a system comprised of any mix of products and services
that can include hardware, software, humans, data, processes (e.g. review process),
procedures (e.g. operator instructions), facilities and naturally occurring entities (e.g.
water, organisms, minerals),

● The life cycle stages of a system at which integration may occur, and
● The context of the domain in which the system functions. [6]

IEEE/ISO/IEC 14764-2021

ISO/IEC/IEEE International Standard - Software engineering - Software life
cycle processes - Maintenance

This International Standard establishes a common framework for software life cycle
processes, with well defined terminology, that can be referenced by the software
industry. It contains processes, activities, and tasks that are to be applied during the
acquisition of a software system, product or service and during the supply, development,
operation, maintenance and disposal of software products. [7]

2.2 Design Analysis

We have only recently entered the implementation phase of our project. With regards to our
software plan, we researched the best algorithms for small object detection. Faster R-CNN
was selected as our algorithm of choice. We have found an implementation of the algorithm
that was successfully run on the Google Colab virtual machine. However, the results are not
yet repeatable on a local machine because the environment Google Colab uses is not
installable on local machines.

We shifted course to finish labeling our dataset for the training process. The implementation
in Google Colab supports training the algorithm on a custom dataset. This is what we intend
to do next as a proof of concept that our algorithm is trainable and implementable before
modifying it to run locally. This follows the generic Computer Science tenet that
functionality comes first; optimization comes after. An additional reason for pursuing this
solution instead of directly resolving the issue is that Google Colab supports downloading the
code as a Python file which can be run locally using terminal commands. As a result, the
issues may be resolved with running Python files locally instead of through Google Colab.
Thus, the solution to our problem will be easier to reach if we have a working algorithm to
test the solutions.

With our hardware, we have only finished our systems-level design. This is because we
required more research and discussion about the machine learning model to have an
understanding of what hardware we would need. The mechanical components take the lowest
priority as the mechanical design may change if we discover some challenges that requires
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changing the mechanical design. So, this approach avoids investing time into designs that
may be changed not as a result of problematic design but new discoveries with the software
and requirements to run the algorithm.

2.3 Development Process

Our project will be completed following the Agile methodology. This method will benefit us
because of its iterative nature. Since the work we’re doing is research and experimental
development, we can assign tasks to be completed in weekly sprints, ensuring that we have
deliverables each week that we can iterate on and improve, while also allowing us to make
steady progress on some of the longer goals, like labelling our data.

Agile is a better fit than Waterfall because our project consists of several distinct components
that do not depend on each other’s completion to be started. We can work on the prototype,
raspberry pi, software, datasets, and ML model simultaneously if necessary.

2.4 Conceptual Sketch

Our intended design is shown in the sketch below (Figure 2.4-1). It is a 3-D representation of
the prototype we intend to develop. The description is broken down as:

Front: handlebar for user to carry the product.

Side: LCD screen for displaying parasitic cyst count. Rotating attachment point for arms.
The rotating attachment point enables the user to fold the arms down for transportability.
Additionally, the rotating attachment contains a hole through which the wires connecting the
Raspberry Pi underneath the platform can be fed to the rest of the components.

Top: On the far end, there is a motor box which may be geared as necessary to produce
enough torque to rotate the plant 180 degrees, flipping the plant. The motor uses a binder
clip-like clamp. Binder clips have highly desirable properties that would make flipping the
plant easy. These properties are a high pressure clamp which requires applied force to
release. With this type of clamp, we will have full control over the orientation of the plant
during operation with very little risk of losing our clamp grip during normal operation.

Bottom: The bottom is not portrayed in the figure. However, the bottom will be partially
hollow exposing the Raspberry Pi (while keeping it off the ground) for the user to connect to
later for data collection/management and charging the power source.

Note: The plant is portrayed with its stem in the clamp and the roots clearly unobstructed
from the overhead camera.
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Arms: The arms are PVC arms attached to the sides as well as attached to each other via a
cross bar piece of PVC. PVC is an ideal material for this because PVC can be machined
easily while having secure joint connections. This enables us to attach a camera mount to the
underneath side of the crossbar in the ideal overhead position for image capture of the plants.

Blow-up Circle: The Blow-Circle in the figure illustrates that the Raspberry Pi can be wired
to the rest of its components by sending the wires through the rotatable attachment point of
the arms.

Finally, Figure 2.4-2 illustrates the block-diagram connections and interactions between the
different components. The blue background illustrates mechanical components, while the
green background illustrates electrical components.

Figure 2.4-1: Conceptual Sketch of Soybean Root Scanner
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Figure 2.4-2 Systems-Level Diagram of Parasitic Cyst Detector

2.4.1Mechanical

Plastic Base will operate as the housing and attachment point for the electrical and
mechanical components.

PVC arms are attached to rotatable attachment points allowing for the arms to fold down
during transportation. Handle is strictly for user to carry the product.

Binder Clips have the properties for securely holding onto the plant: high clamping
capabilities with force applied to release the plant. Thus, the plant will not be easily released
during rotation.

2.4.2 Electrical

Raspberry Pi acts as the control unit and communications center for the product. It will be
coded with autonomous functions that the user can activate with buttons.

Primary function is as follows:
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1) User interacts with Pi to start image capturing and counting process.
2) Camera will take first picture of the plant (User will have set up the product for operation

prior).
3) Picture is sent to Raspberry Pi where the internal counting algorithm is run on the image.
4) Results of counting algorithm are stored.
5) The Motor receives the signal to rate the plant and rotates the plant 180 degrees.
6) Camera will take the second picture of the plant. (User will not need to do any additional

setup prior)
7) Picture is sent to Raspberry Pi where the internal counting algorithm is run is run on the

image.
8) Results of counting algorithm are stored and combined with previous results. Process will

manage double counting but not prevent it.
9) Final results are sent from the Pi for display on LCD screen.

3 Statement of Work

3.1 Previous Work And Literature

The issue of soybean nematode cysts has been studied since the 1950s, with current
processes very similar to the ones developed back then. The two current processes are
discussed below, along with relevant technology and machine learning algorithms.

3.1.1Existing Processes

From talking to Dr. Greg Tylka in Plant Pathology and Dr. Santosh Pandey in Electrical
Engineering, we know there are a couple of processes for counting these nematodes that
already exist.

1. In the corporate research environment, soybean samples are visually scanned by experts
to get an estimate of how many cysts are present. This method is imprecise and requires a
subject matter expert, i.e. lots of investment in training or finding appropriate personnel.

○ The strength of this method is primarily the simple workflow. A single person
takes a sample, examines it, reports their finding, and then disposes of the sample

○ However, this process requires highly skilled labor, which could potentially be
cost-prohibitive, as well as limit the quantity processed.

2. In the academic research environment, soil samples are sieved to filter out the
appropriate size particles to capture cysts. Then, the cyst-sized particles are ground down
to release eggs and create a sample. The sample must then be dyed and a prepared on a
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microscope slide, and finally visually examined by either an algorithm or human
researcher to count the number of eggs, discounting any dirt that remains in the sample.

○ The advantages of this process are consistency and accuracy. The methods
employed in this environment are known and frequently used, and the accuracy is
significantly higher since they are counting the individual eggs.

○ The primary drawbacks of this method are that it is both time-consuming and
requires specialized equipment. This means that it isn’t ideal for high-volume use
cases.

Context: Eggs vs. Cysts

Eggs are different than cysts - each cyst contains 200-250 eggs. In process (2) above, cysts
are ground down to release the eggs, which are then counted under a microscope.

This project will be detecting cysts.

3.1.2Existing Technology

1. There was a company founded (Creative AI) to assist in process (2) above, which created
the algorithm referenced in that process. A plant pathology professor, Dr. Tylka currently
uses Creative AI to assist in his lab research. However, that company went out of
business, and its founders are now working for other companies on unrelated projects.

2. NVidia is a big name in the AI market, and with a product line known as Jetson designed
for embedded devices and usecases, it provides hardware and software designed for
embedded systems using AI and deep learning. [8]

3. The Detectron2 project, published on GitHub as an open source project by Facebook’s
research division, contains an implementation of Mask R-CNN, an improved version of
Faster R-CNN, discussed below. Included in their project are details on how to train a
Mask R-CNN model with a custom dataset, and we are exploring using this
implementation as the machine learning algorithm in our project.

3.1.3Existing Algorithms

We did extensive background research on object detection algorithms in order to choose an
appropriate algorithm for our use-case. In general, object detection algorithms have two
functions: object detection, and object classification. Object detection is used to find the
presence of distinct objects in an image, and a classification model is used to predict what an
object is. Classification models have to be trained on certain object classes.[9]. In our case,
we will be using an existing implementation of an object detection & classification algorithm
to detect and count cysts in a image of a soybean root.
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We are following the Faster R-CNN process for machine learning object detection. This
process is slower in counting the cysts than the state-of-the-art for real-time object detection.
However, with a slower process comes higher accuracy. We discovered that Faster R-CNN is
a top performing algorithm for classifying objects, especially small objects[3]. Upon
successful implementation, we expect to exceed our clients accuracy expectations by a
considerable margin.

Below is a table comparing our chosen algorithm, Faster R-CNN, with other contemporary
deep learning algorithms. Notably absent is the fact that Faster R-CNN is known to have a
better accuracy with small objects in images.

Faster R-CNN [3] You Only Look Once
(YOLO) [10]

Single Shot Detector
(SSD) [11]

5 FPS 20-150 FPS 20-50 FPS

Uses Region Proposal
Network to generate
regions containing objects
for classification.

Uses Anchor Boxes to
generate regions
containing objects for
classification.

Uses Anchor Box
Pyramids to generate
regions containing objects
for classification.

Uses Convolutional
Neural Network to
classify objects.

Uses Convolutional
Neural Network to
classify objects.

Uses Convolutional
Neural Network to
classify objects.

Algorithm Training takes
a considerable amount of
time.

Algorithm Training takes
a moderate amount of
time.

Algorithm Training takes
a moderate amount of
time.

2 stage network-
Additional stage is
Region of Interest Pooling
layer which filters out bad
predictions improving
accuracy and speed later.

1 stage network 1 stage network

73% mean Average
Precision (mAP)

50-65% mean Average
Precision (mAP)

75% mean Average
Precision (mAP)

Capable of handling high
resolution images.

Capable of handling high
resolution images.

Capable of handling high
resolution images.

Table 3.1-1 Object Detection Algorithm Comparison
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Figure 3.1-1 Research illustrating the results of running several machine learning
algorithms. Note that the algorithms were not run on the same data set for each case and are

not indicative of small object performance.

Figure 3.1-2 Model architecture of the Faster R-CNN model.

Fast Facts [9]:

● Not real time (as in not “instant” decision making but still it’s fast at <1 s.)
● Two-Stage
● Algorithm is recursive
● 3 main steps, illustrated in Figure 3.1-2.

○ Generating region proposals
○ From each region proposal, a fixed length feature vector is extracted using image

descriptors
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○ Feature vector is used to assign each region proposal to either background or
object classes

○ Similar setup to a generic object detection pipeline
● Maximize the efficiency of GPU

Feature Extraction [3]

● Region Proposals are then used to extract feature vectors.
● Feature extraction is conducted using anchor boxes.
● Anchor boxes that cross boundaries are ignored during training improving feature

recognition.
● Uses Pyramid of Anchors to improve performance.
● Feature vectors are extracted from regions using the ROI pooling layer.
● ROI pooling layer splits region proposal into a grid, max pooling is applied and returns a

single value
● Feature vector is as large as the number of elements in the grid

Classification [3]

● The feature vectors are then inputs into a CNN classifier.
● CNN used for image classification.
● Classified using Fast R-CNN
● In Faster R-CNN, the creation of region proposals and object detection are performed on

the same CNN. Which, algorithm for regional proposal and the algorithm for detection
are combined for the faster detection speed.

Drawbacks [3]

● Multistage model, cannot train end to end
● Each region is fed independently to CNN for feature detection
● Impossible to run real time

○ “Real Time” is defined as near-instantaneous decision making (milliseconds)

3.2 Technology Considerations

There are a couple different technologies to examine when looking at our approach towards
this project. For example, as mentioned above, there are two existing approaches to doing
this sort of work. The first approach involves counting the number of cysts infecting a
soybean plant by eye, and the second approach involves taking soil samples from farms and
processing them in order to count the number of eggs.
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When examining the first approach, the strengths are clear - it is a quick, easy workflow that
is designed to work for large-scale operations. An expert can get an estimate of the number of
cysts relatively quickly by eye. However, the drawback is just as clear - the accuracy. When
speed, scale, and volume are the primary concerns, accuracy might fall by the wayside.

A possible alternative – and indeed, the approach for this project – is to use computer vision
(a computer running an object detection algorithm on an image) to count the number of cysts
on the plant. This is also scalable, as a device will be able to process a plant fully in under 10
seconds, and devices will be cheap enough to produce at scale. Where it might improve is the
accuracy of the count.

Examining the second approach, we can also clearly identify the strength. Processing the soil
sample and meticulously counting the eggs in solution ensures high accuracy and
consistency. However, the tradeoff for this method is that it takes significantly more
manpower - someone has to sieve the samples, grind down the cysts, prepare the solution,
and run Creative AI’s program on each solution.

Our approach reduces the manpower of this approach significantly. Granted, even with high
accuracy, it may not be as precise as the laboratory approach (due to the variable number of
eggs in each cyst). However, if we can achieve comparable accuracy with a mostly
automated process, it will speed up the process significantly.

Context: Soil Sample Processing

The laboratory process may have different use cases than our solution, as it is designed to test
soil samples, whereas our device will be scanning soybean plants.

3.3 Task Decomposition

This section of the document will break down the tasks that will be required to complete the
project. We separate them out into two main tasks, for hardware and software, and go into
detail from there.

1. Develop a deep learning model suitable for our data
a. Research and choose a deep learning algorithm/model
b. Label our existing data
c. Implement our model in our environment
d. Train the model on our data
e. Validate & test the model
f. Optimize the code for enhanced improvement
g. (Optionally) implement additional models for comparisons.
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2. Prototype a device to scan a soybean plant and run our model on it
a. Set up a controlled environment for image capturing
b. Develop scanner that can scan all sides of the plant
c. Apply the machine learning detector to the scanned sides to accurately count of

the parasitic cysts.
d. Optimize the prototype to be user friendly and intuitive.

3.4 Possible Risks And Risk Management

Our project has some risks involved that require risk mitigation. Each of these risks includes
the probability of the risk occurring and the plan we have in place to mitigate it. Our risk and
mitigation plans are divided into our two main tasks, as well as general risks we might
encounture during this project.

Task 1 - Developing a Deep Learning Mode

Risk Probability Mitigation Plan

Available data is not enough to
train an accurate algorithm on.

0.8 Develop a proof-of-concept model and
allow the project administrators to
collect more data over time to improve
the model.

Labeling tools are
incompatible with algorithm
implementation.

0.1 N/A

Our algorithm does not provide
a sufficient amount of accuracy
rating.

0.1 Since we have a relatively low goal
accuracy (~50%), even with our limited
dataset we should be able to achieve
this.

Table 3.4-1 Deep Learning Model risks and mitigation plans

Task 2 - Developing a Prototype Device

Risk Probability Mitigation Plan

Our hardware does not have
enough resolution for
machine learning to detect.

0.5 Doing market research to find
a high-resolution camera at an
affordable price
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This may violate some of our
requirements budget wise.

For example, our budget is
currently set at $500,
however, in order to get
higher resolution, expensive
cameras might be needed.

Table 3.4-2 Prototype Device Risks and Mitigation Plans

General Risks:

Risk Probability Mitigation Plan

No finite ending 0.2 Good documentation will
avoid lost progress and help
advancements in our project

Less predictability, especially
since no one has a strong
background in this area

0.4 Spending time researching
machine learning can help us
anticipate issues we might
have developing and working
on an algorithm

Table 3.4-3 General Risks and Mitigation Plans

3.5 Project Proposed Milestones and Evaluation Criteria

This section lists the key milestones for our project, and how we will measure our progress
and success in each. These milestones are roughly sequential, but progress will likely be
made on multiple at the same time.

Milestone Description Metrics

1: Background
Research

Progress is complete when we understand
artificial intelligence, machine learning,
and deep learning.

Progression through team
training and onboarding
tasks.

2: Algorithm
Research

Progress is complete when the team
members have sufficient understanding of
machine learning algorithms to evaluate
multiple different deep learning approaches

Number of algorithms
researched & evaluated (3
per person).
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Milestone Description Metrics

and assess which one is best for our
project.

3: Algorithm
Implementation

Progress is complete when a Faster
R-CNN implementation/template is found
on GitHub and is runnable on our
computers.

Progression through
developing a functional
Faster R-CNN
implementation.

4: Labeling Data
(149 total images)

Progress is complete when all the data has
all the cysts on the plants labeled.

Number of completed
images.

5: Algorithm
Training

Progress is complete when we have
developed a model based on the
implementation in milestone 3, trained on
our soybean cyst data.

Progression through
training set of soybean
cyst data.

6: Algorithm
Testing (50%+
accuracy)

Progress is complete when the algorithm
sufficiently hits a high accuracy rating (For
our purposes it is currently set at 50%
subject to change).

Evaluation of results
should show accuracy of
model should be at least
50%.

7: Hardware
Design

Progress is complete when the Hardware
System-Level Diagram is properly
developed and finalized.

Iterative development
process with improving
diagrams and ideas.

8: Hardware
Implementation
(50%+ accuracy)

Progress is complete when we have a
working prototype of the image capturing
device that can run the machine learning
model.

Progression of creating the
design from the previous
milestone.

9: Hardware
Optimization

Progress is complete when the hardware
implementation is friendly and can be run
by not an engineer.

Iterative development
process dedicated to
improvements over
functionality.

10: Algorithm
Optimization

Progress is complete once the counting
accuracy of our algorithm has increased by
a significant amount (5% or more).

Increase in accuracy of
model.

11: Documentation
(Website)

Document our design process,
implementation, hardware & software
designs, and provide next steps.

Progression of team
managed website
including documentation
from each of the stages of
the project.

Table 3.5-1 Milestone Descriptions and Metrics
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3.6 Project Tracking Procedures

Our project will use agile project management to complete milestones across several sprints.
We will have 1 week sprints because of the requirement for weekly reports and the fact that
our team meets on Mondays and Tuesdays. Our Monday meetings will be sprint retrospective
meetings and sprint planning meetings.Additionally, we felt that it was important - since we
are doing research none of us are familiar with - to meet regularly and discuss our notes and
work.

This style has worked well for us because we have multiple facets to our project with various
stages of development. In this case, we have a research phase, a implementation phase, and
an optimization phase. By subdividing these phases, we have had consistent group and
individual assignments designed to promote group discussion and feedback from our client.

Agile project management also has a more iterative approach than the waterfall project
management style. After our senior design project ends, we expect some improvements to be
made to our project. By using the agile methodology, we can brainstorm the improvements
that could be made after our initial machine learning model and accompanying device
provided there is enough time.

We will use Gitlab to track our progress.

3.7 Expected Results and Validation

Our project’s deliverables will include the following: A prototype soybean scanner,
integrated with a Raspberry Pi (or other computing device), camera, and LCD screen, and a
machine learning model trained on soybean cyst data to identify cysts on soybean roots in an
image. The machine learning model will be integrated with the device and able to run on the
Raspberry Pi.

We have a dataset that we will use to establish the accuracy of the machine learning model
after training. According to our project stakeholders, if we can achieve 50% accuracy in our
machine learning model, this project will have been a success. We cautiously hope to beat
this benchmark significantly, but we have yet to have any results.
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4. Project Timeline, Estimated Resources,
and Challenges

4.1 Project Timeline

The team recognizes that this is a complex project that involves a lot of work, and as such,
we have developed a schedule to keep us on track and making progress. We will be using
1-week sprints, except during the summer, when we will be treating each month as a sprint.

The overarching structure of our timeline is treating the first semester as planning, design,
research, and preparation, and the second semester as time for implementation, testing, and
optimization. As you can see below, by sprint 15, we should be done with the research and
design. After that, we’ll move on to training the algorithm we implemented and creating a
prototype of the hardware.

Our agile development process allows us to make progress on multiple milestones at the
same time, as we progress through the sprints. Below is a table summarizing when each
milestone is scheduled to be completed.

Sprint Number
(Out of 32)

Milestone(s) Complete

Sprint 4 Milestone 1: Background Research Complete

Sprint 8 Milestone 2: Algorithm Research

Sprint 12 Milestone 3: Algorithm Implementation

Sprint 13 Milestone 4: Labeling Data

Sprint 15 Milestone 7: Hardware Design

Sprint 20 Milestone 5: Algorithm Training

Sprint 24 Milestone 6: Algorithm Testing
Milestone 8: Hardware Implementation

Sprint 28 Milestone 9: Hardware Optimization
Milestone 10: Algorithm Optimization

Sprint 32 Milestone 11: Documentation

Table 4.1-1 Projected Milestone Deadlines
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We have also included a Gantt chart showing our current progress and planned timelines for
each milestone below.

Figure 4.1-1 Gantt Chart of current milestone progress

4.2 Feasibility Assessment

Our title “Developing a Deep Learning Model to Automatically Detect Microscale Objects in
Objects in image and Videos” indicates along with the project proposal that we should be
strictly developing a deep learning algorithm and training it to identify parasitic cysts in
images. We project that we can develop and train the model as well as design and develop a
prototype that will apply the model in the field. This is achievable because the counting
algorithm model is not new but an application of preexisting models with different training.

We believe that the counting algorithm model is the highest piece of value for our product.
Consequently, achieving a working counting algorithm model is our highest priority. We
have done extensive research into understanding the machine learning algorithms available
and selected one that is used in many applications and therefore should be implementable by
us. This does take into consideration the challenge that no one on our team is specialized in
machine learning or has any background experience in the field. We have also devoted a
considerable amount of time into labeling our dataset for the training process. As a result, we
also have developed the training dataset for our model to be trained successfully.

With considerable resources and time devoted to the machine learning algorithm, we did take
away time from developing the hardware to support the model. We have done research into
each of the components and found that our end product should function as intended.
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However, not enough time has been invested into the hardware as yet to develop a prototype
and test the intended functionality of the hardware. The lack of time available for this will
continue to be a challenge in the future. And, if the components need to be ordered or get
backlogged, this will hamper our ability to complete the hardware component of this project.
Since the hardware application is an additional feature we as a team agreed to design and
develop, we do not expect this to hinder our progress towards our original goal.

Summarily, the model will always be achieved and tested and well developed. However, the
hardware prototype may not reach full development due to time delays and constraints that
may be imposed on us in the future. Thus, the product is feasible provided that we can
acquire all the necessary components within a reasonable amount of time.

4.3 Personnel Effort Requirements

Our project requires a significant effort by each member of the project team. We have divided
our person-hours projection into the two main tasks of our project. Each subtask has been
assigned the expected person-hours and an explanation of why we think each subtask should
take the time it was assigned.

4.3.1 Task 1 - Developing a Deep Learning Model

Subtasks Person-hours Explanation

Research and choose a deep
learning algorithm/model

20 This task is vital to our
project and we cannot train
and test our algorithm until
we’ve chosen one we feel is
best for this specific project

Label our existing data 40 We need to label the data set
to train our algorithm.
Unfortunately, this will have
to be done manually and will
take a considerable effort to
find and label all the cysts in
every image.

Implement our model in our
environment

10-15 This task’s time is dependent
on if we can find an existing
implementation that works on
all our computers. If we have
a template, the work will be
significantly easier.
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Subtasks Person-hours Explanation

Train the model on our data 40 On average, it takes a few
months to train a machine
learning model. However, it
takes a while to run the
algorithm, so person-hours
will be less than a few weeks.

Validate & test the model 20 It takes less time to validate
the model than to train it.

Optimize the code for
enhanced improvement

10 Our professor who oversees
this project has specified we
are not going for a model
with high accuracy. This
means there will likely be less
optimization needed.
However, some optimization
will be needed especially if
the implementation we find
does not specialize in small
objects.

(Optionally) implement
additional models for
comparisons.

60 This is an estimation based on
the person-hours for
implementing, training, and
testing one model. We
anticipate, however, this
would take less time because
we have a better
understanding of the process
of machine learning

Software Documentation 50 The documentation should be
detailed enough for someone
to replicate the project based
on the documentation alone.
As such, it will take a lot of
time to develop.

Total Hours: 190-255 N/A

Table 4.3-1 Software Person-Hour Estimate Breakdown
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4.3.2 Task 2 - Developing a Prototype Device

Subtasks Person-hours Explanation

Set up a controlled
environment for image
capturing

10 A brainstorming/researching
effort will be made to find an
optimal image environment
that helps the cysts stand out.

Develop scanner that can scan
all sides of the plant

20 This portion will be building
the scanner with the
background environment. The
prototyping will also need
testing and revision. Thus,
extra attention will be given
to this task.

Apply the machine learning
detector to the scanned sides
to accurately count of the
parasitic cysts.

15 To avoid double counting
cysts, we will have to add
additional functionality to the
detector that can
cross-reference multiple
images. Due to this, this task
should take less time than the
algorithm.

Optimize the prototype to be
user friendly and intuitive.

10 Our end goal is product a
farmer could use - not an
engineer. Thus, we need it
easy to use with few errors.
The time to accomplish this
will largely depend upon how
well the prototype was
developed

Hardware Documentation 50 The detail that is going into
the descriptive documents
will be enough for anyone to
replicate and reproduce our
product. Consequently, the
documentation is half the
project due to its importance.

Total Hours: 105 N/A

Table 4.3-2 Hardware Person-Hour Estimate Breakdown

Total Projected Person-Hours: 295 - 355.
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4.4 Other Resource Requirements

In addition to time and money, our project will require some additional resources. These
resources are detailed below. The hardware resources are devoted to building our prototype.
The software resources are devoted to creating the environment for the best results for our
training and testing.

Hardware Software

Camera Computing Platform to train the algorithm.

Small Motor Soybean Plant Root Pictures for dataset.

Power Source (Battery)

Binder Clip/Clamp

PVC

Colorized Pastic Base Platform

Raspberry Pi

Handlebar

Table 4.4-1 Hardware and Software Resource Requirements

4.5 Financial Requirements

If relevant, include the total financial resources required to conduct the project.

Item Cost

Raspberry Pi 4 $45

LCD Screen $10

Small Motor $5

Binder Clip $1

PVC (4ft) $20



sddec23-10 Detecting Microscale Objects in Images (29)

PVC 90 Degree Fitting x2 $5

Colorized Pastic Base Platform (3d Printed) $25

Handlebar $10

PVC Swivel Fitting x2 $10

Raspberry Pi Camera v3 (4k) $40

TOTAL $171

Table 4.5-1 Financial Estimate and Parts List

5. Testing and Implementation

5.1 Interface Specifications

Since our project consists of both software and hardware elements, there is a lot of
interfacing between the two that will need thorough testing.

5.1.1 Hardware Interface

In order to create the image capturing device, we will need to integrate components with a
raspberry pi. This includes a camera and an LCD screen to display the number of cysts on the
soybean plant. We will verify the components we buy are compatible with a raspberry pi
whenever we buy them.

We must also integrate our raspberry pi and all attached components with the image
capturing environment. In order to test this, we will verify that the environment created is
controlled and does not allow for variation that will impact the accuracy of our machine
learning model. We will also verify our environment created does not damage the soybean
plants in any way.

5.1.2 Software Interface

The machine learning algorithm, which is faster R-CNN, with the given picture taken by the
raspberry pi camera, should be able to identify and return the value of how many cyst are in
the soybean’s root.
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5.2 Hardware and software

We will be testing many of the hardware components through small programs we write on
the raspberry pi. For example, to test the camera, we will take regular images to test the
resolution and usability of the camera. We will also take pictures of the soybean roots before
integrating it into the image capturing environment. The LCD screen will also be tested
through a small program written on the raspberry pi prior to integration with the scanner.

5.3 Functional Testing

This section of the document will describe our approach to unit testing, integration testing,
system testing, and acceptance testing.

5.3.1 Unit Testing

We will find an implemented Faster R-CNN algorithm to meet the time required for this
project. One unit being tested within our implemented Faster R-CNN algorithm is the
accuracy of the machine-learning model. We are trying to create a machine-learning model
that detects soybean cyst nematodes with 50% accuracy. After training the data set, we plan
to test it with other pictures of soybean roots and validate the number of cysts given by the
model by manually labeling our images and seeing if our model is above our wanted 50%
accuracy.

Context: Accuracy

Accuracy is defined for this project as having the output be within 50% of the actual answer.
An image with 100 cysts could output a number within the range [50, 150] for the model to
be considered 50% accurate. For an image with 200, we would accept output in the range
[100, 300].

This is a different metric than the Object Detection industry standard also called accuracy,
which refers to a combination of several metrics, including how confident the model is and
how often it is right compared to ground truth data.

An important hardware component that will need to be tested before integrating the
component into our system is the camera. The images our machine learning model is being
trained on are very high resolution that we might not have with a camera that is compatible
with a Raspberry Pi. A lot of market research is being done to find a high-resolution camera
for our image-capturing device, but we will be taking pictures with the camera to ultimately
determine what we plan on using for our final prototype.
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Another important hardware component for this project is our Raspberry Pi. Currently, we
plan to use a Raspberry Pi 4, but we will test this to verify it will have the memory to upload
a machine learning algorithm on. We will also verify that running a machine-learning model
is not too slow for the end users.

We will also have to test our image capturing environment setup. To do this, we will verify
there is nothing in the image-capturing environment that would allow for inaccurate results.
For example, if there is reflective material being used that could create bright spots in the
photos. We would also ensure that our environment would not harm the plant in any way. We
would set up the environment with a test plant and make sure nothing in our image-capturing
setup harms the cysts or the soybean roots.

5.3.2 Integration Testing

After the user fixes the soybean on the board, the user should be able to press some kind of
start button, then the signal will go through the raspberry pi, which will send signals to the
camera, by plugging the ribbon connector of the camera module into the connector on the
Raspberry Pi. After taking a picture of the different sides of the soybean, our machine
learning algorithm, implemented in the raspberry pi, should receive and be able to use that
picture. After processing is done in the machine learning part, LCD board connected with the
wire as well, will display the number of the cysts.

The largest integration path in our system is between the machine-learning model and the
image capturing device. We want to allow the end users to be able to capture images of
soybean roots without needing to upload images onto a computer. The software and image
capturing device integration testing will be the last step after verifying the accurate
machine-learning model and uploading it onto a raspberry pi.

5.3.3 System Testing

The system-level testing strategy is going to be a composition of previous testing strategies
discussed in this document. The overall system should all work together at a bare minimum,
meaning the machine-learning algorithm should run on a raspberry pi detecting cysts on an
image of a soybean root captured by our camera. In order to verify this, we will compare the
system-level performance with the unit-level performance of the machine-learning algorithm
to ensure they achieve similar results.

This will require we have results from previous unit tests ensuring the camera’s resolution is
appropriate for the machine learning model, results that give us a baseline for accuracy of our
machine learning model, and results that confirm the raspberry pi can connect with all
requisite devices and run the machine learning model.
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Once we have those results, we can test the system as a whole, ensuring that the time it takes
to process an image is reasonable, its accuracy is comparable to the baseline we established,
and that the integrated process works from image capture to output of the number of cysts

5.3.4 Acceptance Testing

Requirement 1:

Our client requires at least 50% accuracy for parasitic cyst count.

To show that this requirement is being met, we will use a image with the parasitic cysts
labelled. The cysts can then be counted rather easily by using the number of objects labelled.
Then, we can use our product to generate another count of the cysts for comparison. Finally,
to get accuracy, we take the ratio of our products results over the number of labelled cysts as
a percentage, which is ideally over 50%.

Requirement 2:

Soybean that was used as a specimen should be undamaged.

To demonstrate this requirement is being met, we will show that the plant is not destroyed by
our product during its use.

Requirement 3:

Our machine learning algorithm should run on the raspberry pi without error.

To demonstrate this requirement is being met, we will show that our product has appropriate
error handling and the output is as expected.

5.4 Non-Functional Testing

Requirement 1:

Price of our product should be affordable, around $500.

To show that this requirement is being met, we will have itemized parts list that should
demonstrate the total cost for all our parts is less than $500. (For this product to turn into a
business, we would need less than $100 as it is recommended to sell a product for 5x its
production cost).

Requirement 2:
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Our product should be sturdy enough, therefore it is possible to reuse.

To demonstrate that this requirement is met, we will show our product does not break under
normal stresses such as being dropped or having an object dropped on it.

Requirement 3:

Users should interact with our product with as few steps as possible.

To demonstrate this requirement is met, we will show our product is like a black box
where the user only needs to provide the inputs, in our case the plant, push a few buttons to
operate the product, and then receives the outputs. They should not need knowledge of the
internal workings of the product to use it.

Requirement 4:

Our product should be easy to use

With a few steps, users should be able to use and get data using our product. To show that
this requirement is being met, our client should be able to use our product with as few
instructions as possible to take a picture of a soybean plant and generate the parasitic cyst
count on the plant.

5.5 Process

We have not yet started the testing process, but have plans for how each portion of the project
will be tested. Each hardware component will undergo unit testing and integration testing
before the final product is created. We plan on breaking down our systems level schematic
into smaller sections and preforming many tests.

5.6 Results

Since we are only half way done with our project, we do not have any testing results to show
yet. Over the summer, we will be working on training our machine learning model and will
have results either by the end of summer or early next semester. We have a plan to quickly
get our first hardware prototype done early next semester and will have testing results to
show.
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6. Closing Material

6.1 Conclusion

This semester, we have focused on the research and preparation of our project. We started
with a basic overview of machine learning, artificial intelligence, and neural networks. Then,
we researched object detection algorithms, such as Faster R-CNN, You Only Look Once
(YOLO), and Single Shot Detector (SSD). After deciding Faster R-CNN would be the best
algorithm for our small object detection application, we spent a few weeks finding an
implementation of Faster R-CNN that we could upload our data set on. While doing research,
we have been labeling our data set and designing our image capturing device.

Our goals for the summer is to train and test our algorithm and potentially test a few different
ways to process images to get a more accurate model. Some time before the fall semester, we
will also finalize our list of parts to start a prototype of our hardware device. During the fall
semester, we will finalize testing and training our machine learning model. We will also
build, test, and optimize our image capturing device.

Our device will allow for easy and fast image capturing to find the cysts soybean roots. The
current methods of finding cysts consist of sifting the cysts off the roots of soybeans and
manually counting them. Our method provides a way to automate the process of counting
cysts on a soybean plant and will help researchers, and eventually farmers, learn how to
prevent soybean cyst nematodes.
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6.3 Appendix

Figure Appendix-1 Current Image Capturing Phase by Phase Diagram

Background Research Compilation Document:
https://docs.google.com/document/d/1mITfIIbpWDMYVwMXOBxhz1OOZPWPzlSX5o5VofkQ
cLU/edit?usp=sharing

Algorithm Selection Research Compilation Document:
https://docs.google.com/document/d/1RJ1XpO6BM6Xi7iS9vB-CeDnzz7i8VdGND5rzunaQNC
M/edit?usp=sharing

Faster R-CNN Research Compilation Document:
https://docs.google.com/document/d/1BST4wBlz1tL_HMQkdW3w6Xb2519I7nstuGS6UsmCbj
Q/edit?usp=sharing

You must be logged in to your Iowa State account to access these documents.

https://docs.google.com/document/d/1mITfIIbpWDMYVwMXOBxhz1OOZPWPzlSX5o5VofkQcLU/edit?usp=sharing
https://docs.google.com/document/d/1mITfIIbpWDMYVwMXOBxhz1OOZPWPzlSX5o5VofkQcLU/edit?usp=sharing
https://docs.google.com/document/d/1RJ1XpO6BM6Xi7iS9vB-CeDnzz7i8VdGND5rzunaQNCM/edit?usp=sharing
https://docs.google.com/document/d/1RJ1XpO6BM6Xi7iS9vB-CeDnzz7i8VdGND5rzunaQNCM/edit?usp=sharing
https://docs.google.com/document/d/1BST4wBlz1tL_HMQkdW3w6Xb2519I7nstuGS6UsmCbjQ/edit?usp=sharing
https://docs.google.com/document/d/1BST4wBlz1tL_HMQkdW3w6Xb2519I7nstuGS6UsmCbjQ/edit?usp=sharing
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Figure Appendix-2 First Hardware Designs


